MCA & IIT-JAM Entrance Classes

www.insightmca.com

By : GOPAL AGARWAL

Max.	M	ark	5
450 (-	+3	-1)	

BHU - 20

Download Original Question Papers of JNU/BHU/NIMCET/HYDERABAD/DU/ITF-RM.P. MCA/ITF-JAM-MATH..... from our website www.insightmca.com

Time 2:30 hrs.

1. For a frequency distribution standard deviation is computed by using the formula

(a)
$$\sigma = \frac{\sum f(x - \overline{x})}{\sum f}$$
 (b) $\sigma = \frac{\sum f(x - \overline{x})^2}{\sum f}$

(c)
$$\sigma = \sqrt{\frac{\sum f(x-\overline{x})^2}{\sum f}}$$
 (d) $\sigma = \sqrt{\frac{\sum f(x-\overline{x})}{\sum f}}$

- Which one of the following statement is true for a given 2. distribution?
 - (a) Mean deviation > Standard deviation
 - (b) Mean deviation > Standard deviation
 - (c) Mean deviation = Standard deviation
 - (d) Mean deviation and Standard deviation are not related
- In case of bionmial distribution, probability of r 3. successes is given by
 - (a) ${}^{n}C_{r} q^{n-r} p^{r}$ (b) ${}^{n}C_{r} p^{n-r} q^{r}$ (d) ${}^{n}C_{n}q^{n-r}$ (c) ${}^{n}C_{n}p^{n-r}$
- 4. The standard deviation for Poisson distribution with parameter m is
 - (a) m (b) \sqrt{m}
 - (c)
- For a normal distribution, we have 5.
 - (a) mean = median(b) median = mode
 - (d) mean median = mode (c) mode = mean
- The value of the correlation coefficient between two 6 variables lies between
 - (a) $0 \text{ and } \infty$ (b) $-\infty$ and $+\infty$
 - (d) -1 and 1 (c) 0 and 1
- The coefficient of regression of X and Y for the data 7.

In simplex, when the number of non-zero variables is 8. equal to the number of constraints, the set of values is said to form a

- (b) Basic solution (a) Feasible solution (c) Iso-cost solution (d) Optimal solution
- 9. The linear programming problem Maximine z = 4x + y $3x + 5y \le 15$, subject to

$$5x + 5y \le 15,$$

-x + y $\le 2,$
 $4x + 5y \le 20,$

- x, $y \ge 15$ has
- (a) No solution (b) one solution
- (c) Infinite solution (d) Finite solutions
- 10. The resultant of two forces P, Q acting at a certain angle is X; and that of P, R acting at the same angle is also X. Then the value of P is

(a)
$$\sqrt{Q^2 + RX}$$
 (b) $\sqrt{R^2 + QX}$
(c) $\sqrt{X^2 + QR}$ (d) $\sqrt{QR(Q+R)}$

- 11. ABCDE is pentagon, Forces acting on a particle are represented in magnitude and direction by \overrightarrow{AB} , \overrightarrow{BC} ,
 - \overrightarrow{CD} , $\overrightarrow{2DE}$, \overrightarrow{AD} , and \overrightarrow{AE} . Their resultant is given by

(a)	ĀĒ	(b)	2AE
(c)	3 AE	(d)	4AE

- 12. Which one of the following is not a force
 - (a) Tension (b) Attraction
 - (c) Weight (d) Acceleration
- 13. Two like parallel forces P and Q act on a rigid body at A and B respectively. If P and Q be interchanged in position, then the point of application of the resultant will be displaced through a distance (along AB)

(a)
$$\frac{P+Q}{P-Q}AB$$
 (b) $\frac{P-Q}{P+Q}AB$

- (c) (P-O)AB(d) (P+Q)AB
- 14. A beam whose centre of gravity divides it into two portions, a and b, is placed inside a smooth sphere. If θ be its inclination to the horizon in the position of equilibrium and 2α be the angle subtended by the beam at the centre of the sphere, then

(a)
$$\tan \theta = (b-a)(b+a)\tan \alpha$$
 (b) $\tan \theta \frac{b-a}{b+a}\tan \alpha$

(c)
$$\tan \theta = \frac{1}{(b-a)(b+a)} \tan \alpha$$
 (d) $\tan \theta \frac{b+a}{b-a} \tan \alpha$

MCA & IIT-JAM Entrance Classes

15. P, Q, R are the points on the sides BC, CA, AB of triangle ABC such that BP: PC = CQ: QA = AR: RB = m: n. If Δ denote the area of the triangle ABC, then the forces

 \overrightarrow{AP} , \overrightarrow{BO} , \overrightarrow{CR} reduce to a couple whose moment is

- (a) $2\frac{m-n}{m+n}\tan\Delta$ (b) $2\frac{m+n}{m-n}\Delta$ (c) $2(m^2-n^2)\Delta$ (d) $2(m^2 + n^2)\Delta$
- 16. Two unlike parallel forces P and Q (P > Q), xm apart act at two points of a rigid body. If the direction of P be reversed, then the resultant is displaced through the distance
 - (a) 2PQ xm (b) $(P^2 - Q^2) xm$

(c)
$$\frac{2PQ}{P^2 - Q^2} xm$$
 (d) $\frac{2PQ}{P^2 + Q^2} xm$

- 17. If the resultant of two forces P and Q acting at a point
 - at an angle α is $(2m + 1) \sqrt{P^2 + Q^2}$ and when they act at an angle $\left[\frac{\pi}{2} - \alpha\right]$, the resultant becomes (2m - 1) $\sqrt{P^2 + Q^2}$, then (a) $\tan \alpha = \frac{1}{m+1}$ (b) $\tan \alpha = \frac{1}{m-1}$ (c) $\tan \alpha = \frac{m+1}{m-1}$ (d) $\tan \alpha = \frac{m-1}{m+1}$
- 18. To a man walking at 2 km/hr the rain appears to fall vertically when he increases his speed to 4 km/hr it appears to meet him at an angle of 45°. Then the actual velocity of rain is
 - (b) $\sqrt{3}$ km/hr (a) $\sqrt{2}$ km/hr
 - (c) $2\sqrt{2}$ km/hr (d) $2\sqrt{3}$ km/hr
- 19. Acceleation of a moving point is
 - (a) Tension (b) Attraction
 - (d) Acceleration (c) Weight
- 20. If a body is falling freely under gravity, then the acceleration
 - (b) Is uniform (a) Is zero
 - (c) Varies as the square of the distance travelled
 - (d) Varies as the inverse of the distance travelled
- 21. A point moves with uniform acceleration and v_1 , v_2 , v_3 , denote the average velocities in three successive intervals of time t_1, t_2, t_3 , then

(a)
$$\frac{v_1 - v_2}{v_2 - v_3} = \frac{t_1 + t_2}{t_2 + t_3}$$
 (b) $\frac{v_1 + v_2}{v_2 + v_3} = \frac{t_1 + t_2}{t_2 + t_3}$
(c) $\frac{v_1 + v_2}{v_2 + v_3} = \frac{t_1 - t_2}{t_2 - t_3}$ (d) $\frac{v_1 - v_2}{v_2 - v_3} = \frac{t_1 - t_2}{t_2 - t_3}$

22. A mass m is acted upon by a constant force P lb. wt. under which in t sec it moves a distance of x feet and acquires a velocity v ft/sec. Then x is equal to

(a)
$$\frac{\text{gP}}{2\text{mt}^2}$$
 (b) $\frac{\text{mg}}{2\text{v}^2\text{P}}$
(c) $\frac{\text{gt}^2}{2\text{Pm}}$ (d) $\frac{\text{mv}^2}{2\text{gP}}$

23. Masses of 5 kg and 3 kg rest on two inclined planes each of 30° and are connected by a string passing over the common vertex. After 2 seconds the mass of 5 kg is removed. How far up the plane will the 3 kg mass continue to move ?

(a)
$$\frac{2}{3}$$
 m (b) $\frac{3}{5}$ m
(c) $\frac{4}{7}$ m (d) $\frac{5}{8}$ m

24. The time of flight of a particle, which is projected with velocity u in a direction making an angle α , is given by

(b)
$$2 \text{ ug sin}\alpha$$
 (b) $2 \text{ ug cos}\alpha$
(c) $\frac{2 \text{ ug sin}\alpha}{\text{g}}$ (d) $\frac{2 \text{ ug cos}\alpha}{\text{g}}$

- 25. If a particle is projected with a velocity u at an angle $\alpha = 45^{\circ}$, then
 - (a) The range is minimum
 - (b) The range is maximum
 - (c) The range is maximum and equals $\frac{u^2}{2\sigma}$
 - (d) The time to the highest point is $\frac{u}{g\sqrt{2}}$

Direction :

Download Original Question Papers of JNU/BHU/NIMCET/HYDERABAD/DU/ITT-R/M.P. MCA/ITT-JAM-MATH.... from our website www.insightmca.com

www.insightmca.com

(Question Nos. 26-30) : Data on the candidates, who took an examination in Social Sciences, Mathematics and Science are given below:

Passed in all Subjects	167
Failed in all Subjects	60
Failed in Social Sciences	175
Failed in Mathematics	199
Failed in Science	191
Passed in Social Sciences only	62
Passed in Mathematics only	48
Passed in Science only	52

Answer the following questions based on above data :

26. How many failed in one subject only?

(a)	56	(b)	61
(c)	144	(d)	152

INSIGHT MCA CLASS

-113/3-K, First floor, Friends Colony, Swaroop Nagar Kanpur: Mobile: 9336108560 **P-2**

M	CA &	& IIT-JA	M Entrance Classes	www.insightmca	.com	By : GOPAL AGARWAL
27.	Hov	w many fa	iled in two subject only ?	(a)	1/27	(b) 1/25
	(a)	56	(b) 61	(c)	1/550	(d) 175/1000
	(c)	144	(d) 162	35 Th	following dia	ram Propresents husinessmen S

28. How many failed in Social Science only?

(a)	15	(b)	21
-----	----	-----	----

- (d) 42 (c) 30
- 29. How many passed at least in one subject ?

(a)	16/	(b)	304
(c)	390	(d)	450

30. How many passed Mathematics and at least in one more subject ?

	5		
(a)	94	(b)	170
(c)	203	(d)	210

Direction :

(Question Nos. 31-33): These questions are based on the diagram given below. In the diagram, the triangle stands for graduates, square for membership of professional organisations and the circle for membership of social organisations. Read each statement and find out the appropriate numbers to represent the people covered by statement :

- 31. Number of graduates in social organizations is represented by
 - (a) 1 (b) 5 (c) 6 (d) 5 and 6
- 32. Number of graduates in social organizations only is represented by

(d) 6 (a) 3 (b) 4 (c) 5

- 33. Number of graduates in preofessional organizations is represented by
 - (a) 5 and 7 (b) 4, 5 and 6
 - 6 and 7 (d) 5, 6 and 7 (c)
- 34. A survey was conducted on a sample of 1000 persons with reference to their knowledge of English, French and Germen. The result is presented in the Venn diagram. The ratio of the number of persons who do not know the three languages to those who know all the three languages is

from our website www.insightmca.com

35. The following diagram, R represents businessmen, S represents rich men, T represents honest men. Which

number will represent honest rich men?

Direction :

(Question Nos. 36-40) : Which number should come in place of question mark (?) in the following questions :

INSIGHT MCA CLASS

www.insightmca.com

48. If the code word of BOMBAY in a certain code is 58

Directions:

Question Nos. 41-45 The following five questions are based on the following diagram in which the triangle represents female graduates, small circle represents selfemployed females and the big circle represents selfemployed females with bank loan facility. Numbers are shown in the different sections of the diagram. On the basis of these numbers, answer the following :

41. How many female graduates are self-employed?

(a)	12	(b)	13	
(c)	15	(d)	20	

42. How many female graduates are not self-employed?

(a)	4	(b)	11
(c)	10	(d)	15

43. How many non-graduates female are self-employed?

- 9 (a) (b) 11
- (d) 21 (c) 12
- 44. How many self-employed female graduates are with bank loan facility?
 - (a) 5 (b) 7
 - (c) 12 (d) 20
- 45. How many non-graduates self-employed female are with bank loan facility?
 - (b) 8 (c) 9 (d) 12 (a) 3
- 46. If PERILOUS is written as RGTKNQWU in a code language then how will OLYMPIC be written in that language?
 - QNOAKRE (a) (b) QONARKE
 - (c) QNAORKE (d) QKNOARE
- 47. If 'MASTER' is written in as '412536' and 'SERVANT' is written as '2367185' then how will 'REVERENT' be written in the same code language?

(d) 63536385

(a) 63736385	(b) 36733685
--------------	--------------

		then, what will be	the code word for TROMBAY?	
		(a) 89	(b) 94	
OM		(c) 95	(d) 84	,
sightmca.c	49.	In a certain code happy'. 'CTR' as very happily'. The	language 'MT' is coded as 'I a 'That black happy' and 'NPS' - en which word is used for 'am'?	m ʻI
v.ins		(a) M (b) T	(c) P (d) C	
VW W	50.	If CAT is coded as	TC then how will SUN be coded	?
site		(a) UN	(b) NU	
veb		(c) US	(d) NS	
m our 1	51.	In the following se mark (?) 3, 8, 2	ries, find the term in place of question 7, 112, 565 ?	on
ţŗ.		(a) 3400	(b) 3396	
-		(c) 1596	(d) 2266	
AT	52.	In the following r	umber series one number is wron	g.
1-N		Find out the wron	g number -	
		9, 15, 22, 30, 4	0, 90, 60	
		(a) 15	(b) <u>30</u>	
CA	70	(c) 40	(d) 49	
Ž	53.	In the following a	missing term is to be find out (?))
M.F		DKM, FJP, HIS,		
- F		(a) HUI	(b) IGZ	
	54	(c) IGY	(d) LUI	
3AD/DU	<i>J</i> 4.	placed at the bl complete the give	ank places on after another wi n letter-series?	ill
KAF		a — bbc — aab –	– cca — bbcc	
DE		(a) acba	(b) bacb	
>				

- (c) caba (d) abba
- 55. In the following question a number-series is given. Which one of the alternatives will replace the question mark (?)? 4, 9, 19, 39, 79, —?
 - (a) 169 (b) 159
 - (c) 119 (d) 139
- 56. The headquarters of the World Health Organization is located at : ?
 - (a) Paris (b) Geneva
 - (c) Peru (d) Chicago
- 57. Who was the first Indian to be the President of U.N. General Assembly ?
 - (a) Natwar Singh (b) Ramesh Bhandari
 - (c) Smt. Vijai L. Pandit (d) Pandit J.L. Nehru
- 58. Marketing of agricultural produce in India is through :
 - (a) Co-operatives (b) Businessmen (c) Government
 - (d) Individuals

(c) 85336538

Download Original Question Papers of JNU/BHU/NIMCET/H

M	CA & IIT-JAM Entrance Classes	www.insight	tmca.c	com B	y : GOPAL AGARWAL						
59.	The first railway line was laid in India in :	68.	. The 1	modern digital com	puter uses						
	(a) 1836 (b) 1803		(a)	Decimal system	(b) Octal system						
	(c) 1853 (d) 1860		(c)	Binary system	(d) All of these						
60.	The Vikram Sarabhai Space Centre is located a	at E 69.	. The l	base of the binary r	number system is						
	(a) Sriharikota (b) Trivandram	ca.c	(a) 2	2 (b) 16 (c) 8	(d) 10						
	(c) Trombay (d) Bangalore	ut 170.	. Ten c	lata items are to be i	read in a problem. The control						
Dir	ections :	nsig	struc	ture needed is							
Qu	estion Nos. 61-62 : In the following questions.	, choose ≱	(a)	(a) Selection or repetition (b) Only sequential							
C	the word, which is most nearly the same in me	aning to	(c)	(c) Only selection							
	the bold word and mark it in the Answer Sheet	site	(d)	Sequential or repet	ition						
61.	His style is quite transparent .	de 71.	. C is a	ı							
	(a) verbose (b) Involved	Jun	(a)	High level languag	e (b) Low level language						
	(c) Lucid (d) Witty) me	(c)	High level languag	e with some low level features						
62.	High.	. fr	(d)	Machine language							
	(a) Tall (b) Short	H 72.	. Whic	ch of the following	codes uses 7 bits to represent						
	(c) Thin (d) Fat	ATH	a cha	aracter?							
Dir	ections ·	W-	(a)	Output unit	(b) Input unit						
011	ections. estion Nos $63-64$ · In the following questions	choose W	(c)	C.P.U.	(d) Memory						
Qu	the word, which is most nearly the OPPOS	SITE in \vec{E} 73.	. The I	Boolean expression	X + X'Y equals						
	meaning to the bold word and mark it in the	Answer	(a)	X+Y	(b) $X + XY$						
	Sheet.	VC/	(c)	Y+YX	(d) $X'Y + Y'X$						
63.	Lucy is a smart girl.	4 . 74.	. Let A	A be a set having n e	lement. The number of binary						
	(a) Active (b) Indecent	WM	operations that can be defined on A is								
	(c) Casual (d) Lazy	H-F	(a)	z^{n^n}	(b) n^{n^z}						
65	In the following questions the first and the las	t part of	(c)	n ^{zⁿ}	(d) z^{z^n}						
00.	the sentence are numbered 1 and 6. The res	t of the 75.	. The H	Boolean expression ((A+C)(AB'+AC)(A'C'+B')						
	sentence is split up into four parts and named	P, Q, R	can b	be simplified to							
	and S. These four parts are not given in their	r proper 🛛 🛛	(a)	AB + A'C	(b) $A'B + BC$						
	order. Read the sentence and find out which	part of H	(c)	AB + BC	(d) AB						
	the four combinations is correct. Then find the	$e \operatorname{correct} \mathbf{H}$ 76.	. The l	harmonic mean of t	he roots of the equation						
	answer and indicate it in the Answer Sheet :	ETV		$(5+\sqrt{2}) x^2 - (4+\sqrt{5}) x^2$	$x + 8 + 2\sqrt{5} = 0$ is						
	1 : Religion has been used	MC	(a) 2	2 (b) 4 (c) 6	(d) 8						
	P : both as a weapon of isolation	77.	. The	number of quadra	tic equations which remain						
	Q : to dull awareness	НU	unch	anged by squaring	their roots, is						
	R : about real problems	n/B	(a) Z	Zero (b) Four	(c) Two (d) Infinite						
	S : and as morphia	T 78.	. The I	nth term of the serie	es						
	6 : like education, health and employme	nt. 5		$2\frac{1}{2} + 1\frac{7}{2} + 1\frac{1}{2} + 1$	$\frac{20}{1}$ is						
	(a) PQRS (b) PSQR	Iber		2 + 1 13 + 1 9 +	23 + 18						
	(c) QPSR (d) RPQS	u B ²	(a)	$\frac{20}{5}$	(b) $\frac{2}{5}$						
66.	The heart and the nerve centre of a computer	18 1ts 	()	5n + 3	5n-3						
	(a) Output unit (b) Input unit	Jue	(c)	20 (5n + 3)	(d) $\frac{20}{5n^2+3}$						
	(c) C.P.U. (d) Memory) 19.	. The o	coefficient of x ¹⁵ the	e product						
67.	Main memory unit of a computer	igi		$(x-1)(2x-1)(2^2x-1)($	$(2^{15}x - 1) (2^{3}x - 1) \dots (2^{15}x - 1)$						
	(a) Performs arithmetic	lOr	is eu	qal to	· · · · · · · · · · · · · · · · · · ·						
	(b) Stores a small amount of data and instru	ctions bo	(a)	$2^{120} - 2^{108}$	(b) $2^{105} - 2^{121}$						
	(c) Stores bulk of data and instructions	uw	(u) (c)	$2^{120} - 2^{105}$	(d) 2^{120} 2^{104}						
	(d) Supervises the working of all the unit	Ď		2 - 2	(u) $2 - 2$						
IN	SIGHTMCA CLASS -113/3-K, First floor	, Friends Colony,	Swaroo	op Nagar Kanpur :	Mobile : 9336108560 P-5						

MC	CA & IIT-JAM Entran	ce Classes ww	w.insight	tmca.	com	By : GOPAL AGARWAL				
	$\sum_{k=1}^{6} 2^{k}$	$p\pi$, $2p\pi$)		(a)	Symmetric matrix					
80.	The value of $\sum_{n=1}^{\infty} 2 \left(\sin - \frac{1}{2} \right)^n$	$\frac{1}{7} - i\cos\frac{1}{7}$ is		(b)	A skew symmetri	c matrix				
	(a) 1	(b) 2	r	(c)	A singular matrix	d) Non-singular matrix				
	(c) 2	(d) $-2i$	U OJ 89	. If x	$x = \frac{1}{2} (\sqrt{3} + 1),$	then the value of expression				
81.	If 1. ω . ω^2 ω^{n-1} are	nth roots of unity. the	n mca	$4x^3$ +	$+2x^2-8x+7$ equal to					
	$(1-\omega)(1-\omega^2)(1-\omega^{n-1})$ is e	equal to	ghti	(a)	10	(b) 5				
	(a) n^2	(b) 0	insi.	(c)	0	(d) -2				
	(c) 1	(d) n	M 90	. If th	e ratio of the sum	of m terms and n terms of an A.P.				
82.	The number of subsets of	a set containing n distinc	t en st	be n	n ² : n ² , then its rati	o of its mth and nth terms will be				
	object is		vebs	(a)	$\frac{m-n}{m+n}$	(b) $\frac{2m-1}{2m-1}$				
	(a) ${}^{n}C_{1} + {}^{n}C_{2} + {}^{n}C_{3} + {}^{n}C_{4} + \dots {}^{n}C_{4}$	(b) $2^{n}-1$	ur v	(u)						
	(c) $2^{n}+1$	(d) ${}^{n}C_{0} + {}^{n}C_{1} + {}^{n}C_{2} + \dots + {}^{n}C_{n}$	0 110	(c)	$\frac{2m+1}{2n+1}$	(d) $\frac{m+n}{m-n}$				
83.	There are n numbered seats	s around a round table. Tota	մ <u>Հ</u> 	If in	a GP sum of n ter	mais 255 the last term is 128 and				
	around the round table, is	equal to	E H	the	common ratio is 2	2. then the value of n is equal to				
	(a) ${}^{n}C_{n}$	(b) $^{n}P_{n}$	IAT	(a)	2	(b) 4				
	(c) ${}^{n}C_{n-1}$	(d) ${}^{n}P_{n-1}$	И-N	(c)	8	(d) 16				
			VP	. The	value of 7 log(16/	$15) + 5 \log(25/24) + 3 \log(81/80)$				
84.	If the coefficient of z	x ⁷ in the expansion o	of	is ea	qual to					
			CA	(a)	0	(b) log 2				
	$\begin{pmatrix} nr^2 & 1 \end{pmatrix}^{11}$		P. M	(c)	log 3	(d) log 5				
	$\begin{pmatrix} p_x + \frac{1}{qx} \end{pmatrix}$ is equal to	to the coefficient of x ²⁷ 1	n ¥ 93	. IfA	$= \{a, b, d, 1\}, B =$	{c, d, f, m} and {a, l, m, o}, then				
	($(1)^{11}$	T-R	$C \cap$	$(A \cup B)$ is given	by				
	the expansion of $\int px - \frac{1}{2}$	$\overline{qx^2}$, then		(a)	$\{a, d, l, m\}$	(b) $\{b, c, f, o\}$				
	(a) $pq = 1$	(b) $(p/q) = 1$	QQ	(c)	{a, l, m}	(d) $\{a, b, c, d, f, l, m, o\}$				
	(c) $p + q = 1$	(d) $p - q = 1$	Vg 94	. The	number of subse	ts of an n elementric set is				
85.	In the bionomial expansion	n of $(a - b)^n$, $n \le 5$, the sum of	of BRA	(a)	2n	(b) n				
	the 5th and 6th terms is ze	ero. Then (a/b) equals	IUX	(c)	2 ⁿ	(d) $\frac{1}{2}2^{n}$				
	(a) $(n-4)/5$	(b) $(n-5)/6$	H/L 95	. If A	$= \{1, 2, 3\}, B = \{4\}$	5, 6, which of the following are				
	(c) $5/(n-4)$	(d) $6/(n-5)$	ICE	rela	tions from A to B	?				
86	If $\begin{bmatrix} x & x^2 & 1+x^3 \\ y & y^2 & 1+y^3 \end{bmatrix} = 0$ where	x x z oro upoqual and non		(a)	{(1, 5), (2, 6), (3,	4), (3, 6)}				
80.	$ \begin{bmatrix} y & y & z \\ z & z^2 & 1 + z^3 \end{bmatrix} = 0, \text{ where } 2 $, y, z are unequal and non		(b)	{(1, 6), (3, 4), (5,	2)}				
	zero real numbers, then xy	z is equal to	J/BI	(c)	{(4, 2), (4, 3), (5,	1)} (d) BxA				
	(a) 1	(b) 2	N 96	. If f	$= \{(1, 1), (2, 3),$	(0, -1), (-1, -3) be a function				
	(c) -1	(d) -2	rs of	a b	then the value of	f_a h is				
87	$If A = \begin{bmatrix} 111 \\ R = \begin{bmatrix} -2 & 3 \\ 1 & -5 \end{bmatrix} f$	han AR is aqual to	ape	(a)	a = -1 $b = 3$	(b) $a=3$ $b=1$				
87.	$\mathbf{IIA} = \begin{bmatrix} 333 \end{bmatrix}, \mathbf{B} = \begin{bmatrix} 4 & 1 \end{bmatrix}, \mathbf{C}$	nen Ab is equal to	on P	(u) (c)	a = -1, b = 2	(d) $a = 2, b = -1$				
	[-3-1]	[3 -1]	97 Iesti	. A st	traight line passe	s through the point P $(2, \sqrt{3})$ and				
	(a) $[-9-3]$	(b) [9-3]	IQu	mak	kes an angle of 60	0° with the x-axis. The length of				
		$\begin{bmatrix} 3 \\ 2 \\ 2 \end{bmatrix}$	gina	the	intercept on it be	etween the point P and the line				
	(c) [93]	(a) [-9 3]	Oriș	$x+\gamma$	3y = 12					
	[1 -2 -3]		oad	(a)	1.5	(b) 2.5				
88.	If $A = \begin{bmatrix} 2 & 1 & -2 \\ 3 & 2 & 1 \end{bmatrix}$, then A is		Inw	(c)	3.5	(d) 4.5				
_			Do							
IN	SIGHT MCA CLASSI –	-113/3-K, First floor, Frien	ds Colony,	Sware	oop Nagar Kanpu	r: Mobile: 9336108560 P-6				

<u>M(</u>	CA &	z IIT-JAM Entran	ce Classes	www.insi	ghtmo	ca.con	n	By: C	GOPAL AGARWAL
98.	The	co-ordinates of the	orthocentre of the tr	riangle			0	at x	=0
	forn	ned by the lines $2x^2 - 2y$	$y^2 + 3xy + 3x + y + 1 =$	= 0 and			$\frac{1}{-r+r}$	if $0 < 1$	$r < \frac{1}{2}$
	3x +	-2y + 1 = 0 are					$2^{x+[x]}$	<i>ij</i> 0 <i> ,</i>	2
		(1 3)	$\begin{pmatrix} 3 & 1 \end{pmatrix}$	Om		f(x)=	$= \begin{cases} \frac{1}{2} \end{cases}$	if x	$=\frac{1}{2}$
	(a)	$\left(\frac{4}{r},\frac{5}{r}\right)$	(b) $\left \frac{-5}{5}, \frac{-1}{5} \right $	ca.c	106 I	f	2		$\frac{2}{then f(\mathbf{x})}$ is
	~ /	(5 5)	(5 5)	the	100. 1	1	$\frac{2}{-x}$	if $\frac{1}{-\leq}$	x < 1
		$(1 \ A)$	$(2 \ 1)$	sigh			3	2	
	(c)	$\left \frac{1}{r},\frac{4}{r}\right $	(d) $\left \frac{2}{\tau}, \frac{1}{\tau} \right $	v.in			(I	if x=	=1
		(5 5)	(5 5)	M.M.A	(;	a) Coi	ntinuous at x	$=\frac{1}{2}$ (b)	Continuous at $x = 1$
99	The	e equation $\sqrt{(x^2 + x^2)}$	$\frac{1}{4v^2 - 4vv + 4} + r - \frac{1}{4v^2 - 4vv + 4$	2v-1 if	(c) Co	ntinuous at x	=0 (d)	Discontinuous at $x = 0$
	ronr	γ	+y $+xy$ $+y$ $+x$	zy=1 ge				$\left(\frac{1-x^2}{x^2}\right)$	$\begin{pmatrix} 2x \end{pmatrix}$
		Streight line	(b) Circle	ur w	107. T	The deri	ivative of sin-	$(1+x^2)^{-1}$) w.r.t. $\sin^{-1}\left(\frac{1+x^2}{1+x^2}\right)$ is
	(a)			non	(a) _1			
100	(c)	Parabola	(d) Pair of lines	. firo	(4	a) -1			
100	. IWO The	circles $x^2 + y^2 = 5$ and n the equation of the c	$x^2 + y^2 - 6x + 8 = 0$ are sincle through their p	given.)) 100 T	C) 1/X		· · ·	X
	inte	rsection and the point	$(1 \ 1)$ is	E E	108. 1	The diffe	erential coeffi	icient of	X ^x 1S
	(2)	$\mathbf{x}^2 + \mathbf{y}^2$ $6\mathbf{x} + 4 = 0$	(1, 1) 15	MA	(;	a) x ^x l	og x	(b)	$x^{x}\left(\log x + \frac{1}{x}\right)$
	(a)	x + y = 0x + 4 = 0		N N		a)	1		(<i>x</i>)
	(D)	$x^2 + y^2 - 3x + 1 = 0$		P.JA	(c) X [*] ($\log x + 1$	(d)	XX
	(c)	$x^2 + y^2 - 4x + 2 = 0$		LIV	-109 Т	The strai	ight line $\frac{x}{-}$ +	$\frac{y}{z} = 1$ to	uches the curve $v = be^{-x/a}$
	(d)	$x^2 + y^2 - 5x + 3 = 0$		CA			a	b	
101	An	equilateral triangle	is inscribed in a pa	rabola 🚬	a	it the po	oint		
	y-= The	4ax whose vertex is a	t the vertex of the par	rabola. H	(;	a) wh	ere it crosses	the y-ax	xis
	(.)		(h) 2-1/2	R	(b) wh	ere it crosses	the x-ax	is
	(a)	avs	(b) $2a\sqrt{3}$		(c) (0,0	0)	(d)	(1,1)
100	(c)	8av3	(d) 4a√3		110. T	The equa	ation of tange	ent to the	curce $y^2 = 2x^3 - x^2 + 3$ at
102	. It in	ellipse the lenght of la	itus rectum is equal to	half of	tl	he poin	t (1, 4) is		·
	maj	or axis, then eccentric	ity of the empse is	AB	(;	a) y=	2x	(b)	x = 2y
	(a)	N3/2	(b) 1/2	ER	((c) $v =$	4x	(d)	$\mathbf{x} = 4\mathbf{y}$
	(c)	$\sqrt{2}$	(d) $1/\sqrt{3}$	R R	111. T	The len	gth of the no	ormal at	the point $(2, 4)$ to the
103	. The	difference of the foca	al distances of any po	oint on E	р	arabola	$x^2 = 8x$ is		I I I I I I I I I I
		$x^2 y^2$		CE	(a) 4√2	2	(b)	4
	the	hyperbola $\frac{1}{a^2} - \frac{1}{b^2} =$	=1 is	MI) (i	c) √6		(d)	$2\sqrt{3}$
	(a)	0	(b) 20	- AN	112 T	The norr	mal to the cury	ve	2.0
	(a)		(0) 2a (1) 21	BH	x	x = a(cos)	$s \theta + \theta \sin \theta$,	v = a (sin	$\theta - \theta \cos \theta$ at any point
104	(c)	b	(d) 26	· D	θ) is such	n that it	, u (511	
104	. Eve	ry nomogenous equa	ition of second deg	ree in E	(;	a) Pas	sses through t	the origi	n
		Devellation of a pair of	(h) Dannan diaulan ta	erso	0	h) Ma	ikes a constan	it angle y	with the x-axis
	(a)	Parallel to x-axis	(b) Perpendicular to		(·	a) Ma	kos a constan	t angle	with the y axis
	(c)	8av3	(d) Parallel to y-axi	s lu o	()	() with $()$			
		$\tan \pi x$	$(1, 1)^{x}$	lesti)) 112 T	d) Isa	it constant dis	stance fr	om the origin
105	. The	value of $\lim_{x \to -2} \overline{x+2}$	$+\lim_{x\to\infty} \left(\frac{1+\frac{1}{x^2}}{x^2} \right)$ is equ	$\overset{\text{ual to}}{\underline{O}}$	113. 1	ne run	$\operatorname{ction} f(\mathbf{x}) = \mathbf{s}$	1n x (1 +	$-\cos x$ has a maximum
	(a)	$\pi + 1$	(b) $\pi - 1$	inal	v	alue wi	1		1
	(c)	π	(d) 3)rig	(a	a) $x =$	$=\frac{1}{2}\pi$	(b)	$\frac{1}{3}\pi$
	(0)	n	(u) 5	id C		1	2		J 1
				nloa	(c) $\frac{1}{4}\pi$	τ	(d)	$\frac{1}{5}\pi$
						4			5
				I					

INSIGHT MCA CLASS -113/3-K, First floor, Friends Colony, Swaroop Nagar Kanpur : Mobile : 9336108560 P-7

MCA & IIT-JAM Entrance Classes	www.insigh	htmca.	com	By : GOPAL	AGARWAL
114. The equation of tangent to the curve y^2	$=2x^{3}-x^{2}+3$ at	(c)	$e^{x}(x \cos x + \sin x)$	(d) $-e^{x}(x \sin \theta)$	$nx + 2\cos x$)
the point $(1, 4)$ is			1	2 r	
(a) $x = -\frac{1}{2}$ (b) $x = \frac{1}{2}$	1: 8	23. The	value of $(D-3)($	$\overline{D-2}e^{2x}$ is	
(c) $x=1$ (d) $x=-1$	mca.c	(a)	x e ^{2x}	(b) $2x e^{2x}$	
115. The value of $\int \log x dx$ is	sight	(c) 24. Solu	$-x e^{2x}$ ition of the different	(d) $-2x e^{2x}$	
(a) $x (\log x + 1)$ (b) $x (\log x)$. - 1) 		$(1 + y^2) dx + (x - y^2) dx + (x -$	$e^{-\tan^{-1} y}$ dy = 0 is	5
(c) $\log x (x + \log x)$ (d) $x (x - \log x)$	ng x)	(a)	$y e^{\tan^{-1} x} = \tan^{-1} x$	+ c (b) x e ^{tan⁻¹ y}	$= \tan^{-1} y + c$
116. The value of $\int \frac{\tan^{-1} x}{1+x^2} dx$ is	vebsit	(c)	$y = \tan^{-1} x e^{\tan^{-1} x}$	$+ c (d) y = x e^{-ta}$	$an^{-1}x + c$
(a) $e^{\tan^{-1}x}$ (b) $e^{-\tan^{-1}x}$	· 1 0 1	25. Let	the vectors \vec{a} , \vec{b}	\vec{r} be the position	on vectors of
(c) $\frac{1}{1+x^2}$ (d) $-\frac{1}{1+x}$		the the	vertices P, Q, R of a	triangle respective	vely. Which of triangle ?
117. The value of $\int \frac{x-1}{(x-2)(x-3)} dx$ is	LH	the	$1 \rightarrow 1$	$1 \begin{vmatrix} \rightarrow & \rightarrow \end{vmatrix}$	$1 \rightarrow 1$
(a) $2\log(x-2) + \log(x-3)$	I-MA	(a)	$\frac{1}{2} a X b$ (b)	$\frac{1}{2} \left b X c \right \qquad (a)$	c) $\frac{1}{2} c X a$
(b) $\log(x-2) - \log(x-3)$	JAN				
(c) $\log(x-2) - \log(x-3)$	Ĺ	(d)	$\frac{1}{2}aXb+bXc$	c + c X a	
(d) $-\log(x-2) + 2\log(x-3)$	CAL		2		
118. The value of $\int_{0}^{\pi/4} \frac{\sin\theta + \cos\theta}{9 + 16\sin 2\theta} d\theta is$	A.P. M. I.	26. If a	and \vec{b} represent	t two adjacent s	ides $\stackrel{\rightarrow}{AB}$ and
(a) $\frac{1}{2}\log 2$ (b) $\frac{1}{20}\log 2$	5	\overrightarrow{BC}	respectively of a	parallelogram A	BCD, then its
(c) $\frac{1}{20}\log 3$ (d) $\frac{1}{30}\log 3$	7	diag	gonals $\stackrel{\rightarrow}{AC}$ and $\stackrel{-}{D}$	$\stackrel{\bullet}{B}$ are equal to	
119. The volume of a right circular cylinder	of height h and Way	(a)	$\vec{a} + \vec{b} & \vec{a} - \vec{b}$	(b) $\vec{a} - \vec{b}$	$\hat{a} \stackrel{\rightarrow}{a} + \stackrel{\rightarrow}{b}$
radius of base 4 is	DER		\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow	\rightarrow (b) 2 \rightarrow \rightarrow	$a a \rightarrow \rightarrow$
(a) $\frac{1}{3}\pi r^2 h$ (b) $\pi r^2 h$		(c)	$a^{+2}b^{\&}a^{-2}$	$b (d) ^{2}a + b$	a^2a^-b
(c) $\frac{4}{\pi}r^2h$ (d) $\frac{1}{\pi}r^2$		27. Let	ABCD be a paral	lelogram. If $\stackrel{\rightarrow}{a}$,	\vec{b}, \vec{c} be the
$\frac{(a)}{3}$		posi	tion vectors of A, I	B, C respectively	with reference
frustum of cone, then curved surface	of cone is	to ti refe	rence to Ω is	the position vec	tor of D with
(a) $\pi l(r_1 + r_2)$ (b) $\frac{1}{2}\pi l(r_1 + r_2)$		1010			_
(c) $x=1$ (d) $\pi r_1 r_2$	$l^{1} + (l^{2} + r_{1} r_{2})$	(a)	$\vec{a} + \vec{b} + \vec{c}$	(b) $\vec{b} + \vec{c}$	$-\overrightarrow{a}$
121. The degree of the differential equation	l l l l l l l l l l l l l l l l l l l	(c)	\vec{c} + \vec{a} - \vec{b}	(d) $\vec{a} + \vec{b}$	$-\stackrel{\rightarrow}{c}$
$\left[(dy)^2 (d^2y) \right]^{2/3} (d^3)$		20 If tu	v_{0} vectors \rightarrow and	\rightarrow are perellel a	d have equal
$\begin{vmatrix} 3+4 \begin{pmatrix} ay \\ dx \end{pmatrix} + 5 \begin{pmatrix} a & y \\ dx^2 \end{pmatrix} = \begin{vmatrix} a & y \\ dx^2 \end{vmatrix}$	is is	20. II tv	wo vectors a and a	b are parallel al	iu nave equai
) On	(a)	They are not equi	-1	
(a) 3 (b) 4	inal	(a) (b)	They may or may	unot he equal	
(c) 5 (d) 6)rig	(0)	They have the se	ma canca of direct	tion
122. The particular integral of the different	al equation g	(C)	They do not have	the sense of diffec	00011 0011
(D^2-2D+1) y = xe ^x sin x is give	ı by 🦉	(a)	r ney do not nave	the same direction	UII
(a) $e^x \sin(x+1)$ (b) $x (e^x \cos(x+1))$	sx + sin x) 6				
INSIGHT MCA CLASS -113/3-K. Fi	rst floor. Friends Colony	v. Swaro	on Nagar Kannur	• Mobile • 93361)8560 P-8

MCA & IIT-JAM Entrance Classes

www.insightmca.com

129. If \overrightarrow{a} and \overrightarrow{b} are two unit	vectors and $\boldsymbol{\theta}$ is the angle	13										
between them. Then $\vec{a} + \vec{b}$ is a unit vector if												
(a) $\theta = \frac{\pi}{3}$	(b) $\theta = \frac{\pi}{4}$											
(c) $\theta = \frac{\pi}{2}$	(d) $\theta = \frac{2\pi}{3}$ introduction											
130. If the position vectors o	of A and B are \vec{a} and \vec{b}	13										
respectively, then the positi divides AB in the ratio 1:2	ion vector of a point P which is											
(a) $\frac{\overrightarrow{a+b}}{\overrightarrow{a+b}}$	(b) $\overrightarrow{b+2a}$	12										
$3 \rightarrow 3$	$\rightarrow \rightarrow \rightarrow$	13										
(c) $\frac{b+2a}{3}$	(d) $\frac{b-2a}{3}$											
131. Point A is $\vec{a} + 2\vec{b}$, P is \vec{a}	and P divides AB in the ratio											
2:3. The position vector of	f B is											
(a) $2\vec{a} - \vec{b}$	(b) $\vec{b} - 2\vec{a}$	13										
(c) $\vec{a} - 3\vec{b}$	(d) \vec{b}											
132. $\vec{a} \cdot \vec{b} = 0$ implies only	T-R/M											
(a) $\overrightarrow{a} = 0$	(b) $\vec{b} = 0$	13										
(c) $\theta = 90^{\circ}$	BADI											
(d) either $\vec{a} = 0$ or $\vec{b} = 0$	θ or $\theta = 90^{\circ}$	14										
133. If θ be the angle between	a the vecots 4 $\binom{i-k}{k}$ and $\binom{i-k}{k}$											
$\hat{i} + \hat{j} + \hat{k}$, then θ is	VIMC											
(a) $\frac{\pi}{2}$	(b) $\frac{\pi}{3}$	14										
π		14										
(c) $\frac{1}{4}$	(d) $\cos^{-1}(1/\sqrt{3})$	14										
134. If $\begin{bmatrix} \vec{a} & \vec{b} & \vec{c} \end{bmatrix}$ is the scala	r triple product of three											
vectors \vec{a} , \vec{b} and \vec{c} , then	$\begin{bmatrix} a & b & c \end{bmatrix}$ is equal to	14										
(a) $[\vec{b} \ \vec{a} \ \vec{c}]$	(b) $\begin{bmatrix} \vec{c} & \vec{b} & \vec{a} \end{bmatrix}$ in the set of											
(c) $\begin{bmatrix} \overrightarrow{b} & \overrightarrow{c} & \overrightarrow{a} \end{bmatrix}$	(d) $\begin{bmatrix} \vec{a} & \vec{c} & \vec{b} \end{bmatrix}$ Opport											
	IWO											

35. If θ is the angle between vectors \vec{a} and \vec{b} , then $\overrightarrow{a} \times \overrightarrow{b} = \begin{vmatrix} \overrightarrow{a} & \overrightarrow{b} \\ \overrightarrow{a} & \overrightarrow{b} \end{vmatrix}$ when θ is equal to (b) 45° (a) 0 (d) 180° (c) 135° 36. If $\vec{a} = 4\hat{i} + 2\hat{j} - 4\hat{k}$, $\vec{b} = -12\hat{i} - 6\hat{j} + 15\hat{k}$. then the vectors \vec{a} and \vec{b} are (a) Parallel (b) Non-parallel (c) Orthogonal (d) Non-coplanar 37. If the position vectors of three points are $\vec{a} - 2\vec{b} + 3\vec{c}, -2\vec{a} + 3\vec{b} - 4\vec{c}, -7\vec{b} + 10\vec{c}$. then the three points are (a) Collinear (b) Coplanar (c) Non-coplanar (d) Neither 8. If $\vec{A} = 2\hat{i} + 2\hat{j} - \hat{k}$, $\vec{B} = 6\hat{i} - 3\hat{j} + 2\hat{k}$. then $\vec{A} \times \vec{B}$ will be given by (a) $2\hat{i}-2\hat{j}-\hat{k}$ (b) $\hat{6}\hat{i}-3\hat{j}+2\hat{k}$ (c) $\hat{i} - 10 \hat{j} - 18 \hat{k}$ (d) $\hat{i} + \hat{j} + \hat{k}$ 39. If $|\vec{a}| = |\vec{b}|$, then $(\vec{a} + \vec{b}) \cdot (\vec{a} - \vec{b})$ is (b) - tive (a) + tive (d) Zero (c) unity 40. The vector $2\hat{i} + \hat{j} - \hat{k}$ is perpendicular to $\hat{i} - 4\hat{j} + \lambda\hat{k}$, if λ is equal to (a) 0 (b) -1 (c) -2(d) -31. The value of $\cos 10^\circ - \sin 10^\circ$ is (a) Positive (b) Negative (d) 1 (c) 0 2. If sin $\alpha = \sin \beta$, then the angle α and β are related by (a) $\alpha = 2n\pi + (-1)^n \beta$ (b) $\alpha = n\pi \pm \alpha$ (c) $\beta = n\pi + (-1)^n \alpha$ (d) $\beta = (2n+1)\pi + \alpha$ 43. The value of $\frac{1-\tan^2 15^\circ}{1+\tan^2 15^\circ}$ is (b) $\frac{\sqrt{3}}{2}$ (a) $\sqrt{3}$ (c) 1 (d) 2

INSIGHT MCA CLASS -113/3-K, First floor, Friends Colony, Swaroop Nagar Kanpur : Mobile : 9336108560 P-9

1 - 5	С	В	A	В	D	51 - 55	В	С	D	A	В	101 - 105	D	W	В	С	A
6 - 10	D	W	В	В	С	56 - 60	В	С	W	С	В	106 - 110	D	А	С	А	W
11 - 15	С	D	В	В	W	61 - 65	С	А	W	С	В	111 - 115	А	D	В	С	В
16 - 20	С	D	С	В	В	66 - 70	С	В	С	А	D	116 - 120	W	D	С	В	A
21 - 25	D	D	W	С	В	71 - 75	С	А	А	W	W	121 - 125	D	D	С	В	D
26 - 30	В	D	А	С	С	76 - 80	В	В	А	В	С	126 - 130	А	С	В	D	В
31 - 35	D	D	Α	В	D	81 - 85	D	D	В	А	А	131 - 135	С	W	А	С	В
36 - 40	Α	A	С	В	В	86 - 90	С	В	В	А	В	136 - 140	А	W	С	D	С
41 - 45	D	Α	D	С	С	91 - 95	С	В	С	С	А	141 - 145	А	С	В	W	В
46 - 50	С	А	В	А	D	96 - 100	D	С	В	А	W	146 - 150	С	D	С	В	D
Note : W m	leans	s qu	esti	on is	s incoi	rrect and for	r inco	orre	ct q	uest	ions f	full marks are	e giv	ven t	o st	ude	nts
INSIGHT M	CAC	LAS	S	-11	3/3-K, I	First floor, Frie	nds C	olony	v. Swa	aroop	Nagai	r Kanpur : Mob	ile:9	3361	0856	0 R	-1(