Mock Paper 1

Instructions

- This Mock Paper consists of two subjects. Sub Test-I (Quantitative and Mathematical Ability Test) consisting of 50 (i) objective questions. Sub Test-II (Computer and Logical Ability Test) consisting of 50 objective questions.
- (ii) Attempt all the questions.
- (iii) Each test paper carries 200 marks. Each question consists of 4 marks. One mark will be deducted for wrong answer.
- (iv) Use a soft HB pencil darken the appropriate bubble.

Sub Test-I. Quantitative and Mathematical Ability Test

M. Marks: 200 **1.** The smallest integer *n* for which $\frac{1}{1-i}^{n} = 1$ is (a) 8 (b) 12 (c) 16 (d) 4 2^{r} ¹ 2 3^{r} ¹ 4 5^{r} ¹ 4 5' - , then the value of D_r is r = 1**2.** Let D_r 2^n 1 3^n 1 4^n 1 (b) 2^n 2^n 4^n (c) 2 3 4 (d) None of these (a) **3.** If $A = (a_{ij})_m = n$ is a matrix of order *n*, then rank of (*In*) is (d) None of these (a) 1 (b) n (c) 0 **4.** The existence of the unique solution of system x y z b, 2x 3y z 6, 5x y az 10 depends on (c) a and b(d) neither a nor b (a) b only (b) a only **5.** The number of asymptotes of the polar curve $r = \frac{a}{1 - \cos^2}$, is (a) infinitely many solution (b) 3 (d) 0 (c) 2

Time: 75 min.

7 . 1	(0)	1 × 1	(c) $x = 4$	convergent?
	The series $\frac{(n \sqrt{n})^n}{2^n (n)^{n-1}}$ is	1 X 1	(C) X +	(u) 2 x +
(a) convergent (b)	divergent	(c) not convergent	(d) None of these
8. I	$f a_n = \frac{1}{n} [(n 1) (n 2) \dots$	$(n 4)]^{1/n}$, then the sec	quence a _n converges t	0
(a) $\frac{1}{e}$ (b)	$\frac{2}{e}$	(c) $\frac{3}{e}$	(d) $\frac{4}{e}$
9. I	Let $f(x) (x - 1)^2 = 1$, (x	1). Then, the set $\{S > S\}$	f(x) = f(x) + f(x) is	
((a) 0, 1, $\frac{3 i\sqrt{3}}{2}$, $\frac{3 i}{2}$	$\sqrt{3}$	(b) {0, 1, 1}	
((c) $\{0, 1\}$		(d) empty	
10. I	n a group $(G_1, *)$ the equation a) unique solution $b * a^{-1}$	on x * a b has a		(b) unique solution $a^{-1} * b$
(c) unique solution $a = b^{-1}$	· • • • • •	(d) many solution	
11. V (Which of the following algebra $(Q, , *)$ (b)	(<i>I</i> , , *)	(c) $(R, , *)$	(d) (<i>C</i> , , *)
12. I:	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	e sequences such that S	$S_n U_n t_n \text{ for each } n \text{ and}$ (b) $\lim U_n \lim S_n$ (d) None of these	l lim S_n lim t_n , then
13 . F	For real numbers x and y , ar	The define $x R y$ if $x y$	$\sqrt{2}$ is an irrational num	ber. Then, the relation R is
((a) reflexive but neither symm c) reflexive and transitive but	etric nor transitive not symmetric	(b) reflexive and symmetrie(d) an equivalence relation	c but not transitive 1
14. I	$f^{15}P_{r-1}: {}^{16}P_{r-2}, \text{ then } r$	is equal to		
((b) (a) 8	14	(c) 12	(d) 10
15. I	f the sum of the coefficients	in the expansion of ($x^{2}x^{2}$ 2 x 1) ⁵¹ vanish	nes, then the value of is
(a) 2 (b)	1	(c) 1 1	(d) 2
16 . 1	The largest term in the expans	sion of $(3 2x)^{30}$ where	$e x = \frac{1}{5}$ is	
	a) 7th (b)	51st	(c) 5th	(d) 6th
(iara cultimatriv at ardar r	
(17. I:	f A $[a_{ij}]_m$ is a matrix of a) B is invertible	t rank r and B is a squ	(b) B is not invertible	1, then
(17. I: ((f A $[a_{ij}]_m$, is a matrix of a) B is invertible c) B may or may not be inve	f rank r and B is a squ ertible	(b) B is not invertible(d) None of these	1, then
(17. I: ((18. 7	f A $[a_{ij}]_m$ is a matrix of a) B is invertible c) B may or may not be inve The equation whose roots ar	t rank r and B is a squ ertible re 6 times the roots of	(b) <i>B</i> is not invertible (d) None of these the equation $6x^4 - 7x^3$	1, then $8x^2 7x 2 0$ is
(17. I: ((18. 7 (f A $[a_{ij}]_m$ is a matrix of a) B is invertible c) B may or may not be invertible The equation whose roots ar a) x^4 $7x^3$ $48x^2$ 252x	r rank r and B is a squ ertible re 6 times the roots of 432 0	(b) <i>B</i> is not invertible (d) None of these the equation $6x^4$ $7x^3$ (b) x^4 $24x^3$ $36x^2$	1, then $8x^2 7x 2 0$ is 252x 432 0

19.	The function $f(x)$	1, $ x = 1$ $\frac{1}{n^2}$, $\frac{1}{n} x = \frac{1}{n-1}$, $n = 2$, 0, $x = 0$	3	
	(a) is discontinuous at	t finitely many points	(b) is continuous everywh	nere
	(c) is discontinuous of	nly at $x = \frac{1}{n}$	(d) None of these	
20.	N characters of info	prmation are held on magnitude x^2 seconds, and are c	etic tape, in batches of constants. The optimal valu	x characters each, the batch ue of x for fast processing is
	(a) —	(b) —	(c) <u></u>	(d) $\sqrt{-}$
21.	Let f be differentiabl (a) f (6) 8	e for all x. If f (1) 2 and f (b) f (6) 8	(x) 2 for all x [1, 6], th (c) f (6) 10	nen (d) f (6) 5
22.	If $U = x f = \frac{y}{x}$ $\frac{y}{x}$, then $xu_x = yu_y$ is equal to		
	(a) $x f \frac{y}{x}$	(b)	(c) <i>f</i> ()	(d) None of these
23.	The derivative of the (a) 1	function $f(x) \ln x $ at x (b) 1	1, is (c) 0	(d) does not exist
24.	If $In e^{x} x^{n}$	1 dx, then $e^{x} x^{n-1} dx$	dx is equal to	· · /
	(a) In	(b) $\frac{1}{-}$ <i>In</i>	(c) $\frac{In}{n}$	(d) ⁿ In
25.	For $y f(x) = \begin{pmatrix} x \\ 0 \end{pmatrix} = 2$	$t \mid dt$, the tangent lines paralle	el to the bisector of the firs	st quadrant angle are
	(a) $y x \frac{1}{4}$	(b) $y \ x \ \frac{3}{2}$	(c) $y x \frac{1}{2}$	(d) None of these
26 .	The area bounded by	$y x^2, y [x 1], x 1 \text{ and } x$	the y-axis	
	(a) $\frac{1}{3}$	(b) $\frac{2}{3}$	(c) 1	(d) $\frac{7}{3}$
27.	If the polar of $(x \ c)^2 \ (y \ d)^2$	a point (<i>p</i> , <i>q</i>) with respe b ² , then	ct to the circle x^2	y^2 a^2 touches the circle
	(a) $b^2 (p^2 q^2)$ (a)	2 cp dq) ²	(b) $b^2 (p^2 q^2) (a^2)$	$(q dp)^2$
	(c) $a^2 (p^2 q^2) (b^2$	2 cp dq) ²	(d) None of these	
28 .	For the curve y^2 (x	1) $(x \ 2)^2$		
	(a) (0, 2) is a node (c) (1, 1) is an isolated	point	(b) (1, 2) is a cusp	(d) (2, 0) is a node
29 .	The eccentricity of th	e ellipse which meets the stra	ight line $\frac{x}{7}$ $\frac{y}{2}$ 1 on the	e axis of x and the straight line
	$\frac{x}{3} = \frac{y}{5}$ 1 on the axis	s of y and whose axis lie alor	ng the axis of coordinate is	5
	(a) $\frac{3\sqrt{2}}{7}$	(b) $\frac{2\sqrt{6}}{7}$	(c) $\frac{\sqrt{3}}{7}$	(d) None of these
		<u>@`</u>	3	

30 .	The condition of the chord $x \cos y \sin p = 0$	of x^2 y^2 a^2 0 may subtend a right angle at the
	(a) $a^2 2p^2$ (b) $p^2 2a^2$ (c) a 2p (d) p 2a
31.	The locus of the point of intersection of the straight	lines $\frac{x}{a} = \frac{y}{b}$ and $\frac{x}{a} = \frac{y}{b} = \frac{1}{a}$ (is a variable) is
	(a) a circle (b) a parabola (c) an ellipse (d) a hyperbola
32.	If a, b, c are in GP, then the equations $ax^2 2bx$ $\frac{d}{a}, \frac{e}{b}, \frac{f}{c}$ are in	c 0 and dx^2 2ex f 0 have a common root, if
	(a) GP (b) HP (c) AP (d) None of these
33.	The ellipse $\frac{x^2}{a^2} = \frac{y^2}{b^2} = 1$ and the straight line $y = mx$	c intersect in real points only if
	(a) $c^2 b^2 a^2 m^2$ (b) a^2m^2 c^2 b^2
	(c) a^2m^2 c^2 b^2 (d) <i>c b</i>
34.	The spheres x^2 y^2 z^2 9 and x^2 y^2 z^2 24	4x 40y 18z 225 0
	(a) touch internally((c) intersect orthogonally(b) touch externally d) None of these
35.	The moment of the couple formed by the forces 5 (3, 2, 1) respectively, is	$\hat{\mathbf{i}}$ $\hat{\mathbf{k}}$ and $5\hat{\mathbf{i}}$ $\hat{\mathbf{k}}$ acting at the point (9, 1, 2) and
	(a) $\hat{\mathbf{i}}$ $\hat{\mathbf{j}}$ $5\hat{\mathbf{k}}$ (b) $\hat{\mathbf{i}}$ 11 $\hat{\mathbf{j}}$ 5 $\hat{\mathbf{k}}$
	(c) $\hat{\mathbf{i}}$ 11 $\hat{\mathbf{j}}$ 5 $\hat{\mathbf{k}}$ (d) $\hat{\mathbf{i}}$ $\hat{\mathbf{j}}$ $5\hat{\mathbf{k}}$
36.	A vector a has components $2p$ and 1 with respect to	o a rectangular cartesian system. This system is rotated
	through a certain angle about the origin in the count components $p = 1$ and 1, then	erclockwise sense. If with respect to new system, ${\boldsymbol{a}}$ has
	(a) <i>p</i> 0 (b) $p = 1 \text{ or } p = \frac{1}{3}$
	(c) $p = 1 \text{ or } p = \frac{1}{3}$ (d) p 1 or p 1
37.	Let X_1 and X_2 are optimal solutions of a LPP, then	
	(a) $X X_1$ (1) X_2 , R is also an optimal sol	ution
	(b) $X = X_1$ (1) X_2 , 0 1 gives an optimal so	olution
	(c) $X X_1 (1) X_2, 0 1 \text{ gives an optimal sc}$	lution
	(d) $X = X_1$ (1) X_2 , <i>R</i> is also an optimal solu	tion
38.	Choose the correct statement (a) $B(C)$ is a vector space but $C(B)$ is not a vector space	ca
	(b) C (B) is a vector space but C (R) is not a vector space but R (C) is not a vector space bu	
	(c) R (C) as well as C (R) is a vector space	
	(d) None of the above	
39 .	If (x) (x) and (1) 2 then (3) equals	
	(a) $2e^2$ (b) e^2 (c) $3e^2$ (d) $2e^3$
40 .	If $y_1(x)$ and $y_2(x)$ are two solutions of the differentiation	al equation $\frac{dy}{dx} = f(x)y + r(x)$, then $y_1(x) = y_2(x)$ is a
	solution of	

(a)
$$\frac{dy}{dx} = f(x)y = 0$$

(b) $\frac{dy}{dx} = 2f(x)y = r(x)$
(c) $\frac{dy}{dx} = f(x)y = 2r(x)$
(d) $\frac{dy}{dx} = 2f(x)y = 2r(x)$

41. A variable has Poisson distribution with mean m. The probability that the variable tables any of the values 0 or 2 is

(a)
$$e^{m} 1 m \frac{m^{2}}{2!}$$
 (b) $e^{m} (1 m)^{\frac{3}{2}}$
(c) $e^{m} (1 m^{2})^{\frac{1}{2}}$ (d) $e^{m} 1 \frac{m^{2}}{2!}$

42. The probability of occurrence of two events *E* and *F* are 0.25 and 0.50 respectively. The probability of their simultaneous occurrence is 0.14. The probability that neither *E* occurs nor *F* occurs is
(a) 0.39
(b) 0.89
(c) 0.12
(d) None of these

43. If *P* is chosen at random in the interval 0 *P* 5, the probability that the roots of the equation $x^2 Px = \frac{P}{4} = \frac{1}{2} = 0$ are real, is

(a)
$$\frac{1}{5}$$
 (b) $\frac{2}{5}$ (c) $\frac{3}{5}$ (d) $\frac{4}{5}$

44. For a certain normal distribution, the first moment about 10 is 40 and the fourth moment about 10 is 48. What is the arithmetic mean and standard deviation of the distribution ?
(a) 48, 2
(b) 50, 2
(c) 52, 4
(d) None of these

45. If each observation of a raw data whose variances is 2^{2} is multiplied by *h*, then the variance of the new set is

(a) 2 (b)
$$h^{-2}$$
 (c) h^{-2} (d) h^{2-2}

46. In a distribution, the coefficient of shewness is 0.5. If the sum of lower and upper quantities is 120 and median is 40, then upper and lower quantities are
(a) 50, 70
(b) 60, 60
(c) 100, 20
(d) 100, 40

- **47.** If a linear relation aX = bY = c = 0 exists between the variable X and Y and ab = 0, then the coefficient of
 - correlation between X and Y is(b) 1(a) 1(b) 1(c) 0(d) any number between 1 and 1

48. If the regression coefficient of Y on X is $\frac{4}{3}$, then the regression coefficient of X on Y is

(a)
$$\frac{3}{4}$$
 (b) less than 1
(c) less than $\frac{3}{4}$ (d) can take any value

49. In students t test, the parameter t is given by

(a)
$$\frac{|\bar{x}|}{\sqrt{S}} \cdot \sqrt{n}$$
 (b) $\frac{|\bar{x}|}{S} \cdot n$ (c) $\frac{|\bar{x}|}{S} \cdot \sqrt{n}$ (d) $\frac{|\bar{x}| \cdot S}{\sqrt{n}}$

50. The sequation of the cylinder which generates parallel to the line

x
$$\frac{1}{2}$$
y $\frac{1}{3}$ z and whose giving curve is the ellipse x^2 $2y^2$ 1, z0, is(a) $3x^2$ $6y^2$ $3z^2$ $8yz$ $2zx$ 30(b) $3x^2$ $6y^2$ $3z^2$ $8yz$ $2zx$ 30(c) $3x^2$ $6y^2$ $3z^2$ $8yz$ $2zx$ 30(d) $3x^2$ $6y^2$ $3z^2$ $8yz$ $2zx$ 30

Sub Test-II. Computer and Logical Ability Test

M. Marks: 200

Time: 60 min.

Directions (51-53) :

Study the diagram carefully and answer the following questions on the basis of the number shown in the

	Female graduate			
	Self-employe bank lo	ed females with 2	4 7 8 9 Se	f-employed females
	different sections of the c	liagram.		
51.	How many female gradu (a) 12	ates are self-employed? (b) 13	(c) 15	(d) 20
52 .	How many female gradu	ates are not self-employed	1?	
	(a) 4	(b) 10	(c) 12	(d) 15
53.	How many non-graduate	females are self-employed	d?	
	(a) 9	(b) 11	(c) 12	(d) 21
Direc	ctions (54-55) :			
	Write the missing term in a	the following series		
54.	2, 3, 8, 63, ()			
	(a) 1038	(b) 1998	(c) 3008	(d) 3968
55.	LXF, MT NPN, OLR?			
	(a) PHV	(b) PIU	(c) PJW	(d) PKK
56.	What will be the output # define CUBE (X) (X*X main () { int a, b; h = 2u	of the following program s (*X)	segment?	
	b = 3;; a = CUBE (b++)/b++:		
	print f ("a =	% d b = % d", a, b);		
	}			
	(a) $a = 9, b = 7$ (c) $a = 27, b = 64$		(b) a = 27, b = 7 (d) None of these	
57.	The output of the follows (a) $p q r$ (c) $pq qr rp$	ng boolean expression pq	r pqr pqr pqr is (b) pq r (d) None of these	
58.	In a flow chart what is the (a) comment	ne use of the symbol hexa	agon? (b) decision box	

(c) indicating the input output (d) preparation box **59.** Bubble memories are preferable to floppy disks because (a) of their higher transfer rate (b) cost needed to store a bit is less (d) of their reliability (c) they consume less power **60.** The decimal equivalent of $(1000011.01)_2$ is (a) 64.25₁₀ (b) 67.25₁₀ (c) 121.75₁₀ (d) None of these **61.** Consider the C program shown below; # include <. h> # define print (X) print f ("% d", X) int X; void Q (int z) { zt x; print (z); } void p (int*y) { int x * y + 2; Q (x); *y = x - 1;print (x) } main (void) { x 5; p (&x); print (x); } The output of this Program is (a) 1276 (b) 221211 (c) 1466 (d) 766 62. Where was the India's first computer installed and when? (a) Institute of Social Science, Agra, 1955 (b) Indian Institute of Statistics, Delhi, 1957 (c) Indian Statistical Institute Calcutta, 1955 (d) Indian Institute of Science Bangalore, 1971 63. c font (a) is front end of a C compiler (b) is the pre-processor of a C compiler (c) translates a C++ code to its equivalent C code (d) None of the above y] [x (y z)] is (a) x (b) y (c) z (d) x y z65. Study the following algorithm sum 0 Ι 0 Repeat sum sum + (2I + 1)Ι I + 1

(d) None of the above

- **73.** Hexadecimal equivalent of 1110101101_2 is
 - (a) (3BD)₁₆
 - (c) (3AD)₁₆

- (b) (3AE)₁₆
- (d) None of these
- 74. Which one of the following statements is false?
 - (a) Optional binary search tree construction can be performed efficiently using dynamic programming
 - (b) Breadth-first search cannot be used to find connected components of a graph
 - (c) Given the prefix and postfix walks of a binary tree, the binary tree cannot be uniquely reconstructed
 - (d) Depth-first search can be used to find the connected components of a graph
- **75.** The value of the boolean expression $(a \ b) \cdot [(a \cdot b) \ b]$ is (a) $(a \ b)$ (b) (a b) (c) b (d) 0 a **76.** Consider the following graph Among the following sequences Ι а b е h f g Π а b f е h g III b f h а g е IV f h b а g е Which are depth first traversals of the above graph? (a) I, II and IV only (b) I and IV only (c) II, III and IV only (d) I, III and IV only 77. The following Program void (int & p) {cout p;} void main (void) {float m 11.23; abc (m); cout m;} This code (a) results in compilation error (b) results in run-time error (c) prints 11.23 (d) prints 11 **78.** Find the least number that when divided by 16, 18 and 20 leaves a remainder 4 in each case, but is completely divisible by 7 (b) 2254 (a) 364 (c) 2884 (d) 3234 **79.** The price of a house increased by 25% after 10 yr reduces by 25% during the subsequent 10 yr. If the present cost is Rs 10 lakh, what will be its cost after 20 yr? (a) Rs 937500 (b) Rs 900000 (c) Rs 850000 (d) Rs 725000

80. A shopkeeper bought some pencils at 2 for Re 1 and an equal number at 3 for Rs 2. He sold the entire lot at 5 for Rs 3. Find out his gain or loss percentage

- (a) $2\frac{6}{7}$ % loss (b) $3\frac{6}{7}$ % gain (c) $2\frac{6}{7}$ % gain (d) None of these
- **81.** The average of 50 numbers is 38. If two numbers, namely 45 and 55 are discarded, the average of remaining number is

(a) 36.5	(b) 37
(c) 37.5	(d) 37.52

82. Two bullets were fired at a place at an interval of 38 min. A person approaching the firing point in his car hears the two sound at an interval of 36 min. The speed of sound is 330 m/s. What is the speed of the car?

(a) 66 km	(b) 49 km
(c) 99 km	(d) 98 km

83. A sum of money lent out at simple interest amounts to Rs 460 in 3 yr while in 5 yr it amounts to Rs 500. The sum and the rate of interest will be

(a) Rs 400, 4%	(b) Rs 300, 5%
(c) Rs 400, 5%	(d) Rs 300, 4%

84. A is twice as good a workman as B and together they finish a piece of work in 18 days. In how many days will A alone finish the work?

(a) 20 days	(b) 25 days
(c) 23 days	(d) 27 days

85. Two pipes A and B can fill a cistern in 20 min and 25 min respectively. Both the pipes are opened together, but at the end of 5 min the first is turned off. How long does it take to fill the cistern?

(a)	16.5 min	(b) 22 min
(c)	18.75 min	(d) 20 min

86. A dog pursues a cat and takes 5 leaps for every 6 leaps of the cat, but 4 leaps of the dog are equal to 5 leaps of the cat. Compare the speeds of the dog and the cat

(a) 15 : 22	(b) 9 : 25
(c) 25 : 21	(d) 25 : 24

87. A furniture shop allows 20% discount on the marked price of each item what price must be marked on a table costing Rs 560, so as to make a profit of 25%

(a) 800	(b) 825
(c) 700	(d) 875

88. 5 yr ago, the average of Ram and Shyam's ages was 20 yr, Now the average age of Ram, Shyam and Mohan is 30 yr. What will be Mohan's age 10 yr hence?

(a) 45 yr	(b) 50 yr
(c) 49 yr	(d) 60 yr

89.	A man sitting in the train which is travelling at 50 km/h observes that a goods train, travelling in opposite direction takes 9 s to pass him. If the goods train is 150 m long. Find its speed					
	(a) 12 km/h		(b) 10 km/h			
	(c) 8 km/h		(d) 20 km/h			
90.	A can do a piece of work in 15 days and B alone can do it in 10 days. B works at it for 5 days a then leaves. A alone can finish the remaining work in					
	(a) $6\frac{1}{2}$ days	(b) $7\frac{1}{2}$ days	(c) 8 days	(d) 9 days		
91.	91. In a factory men, women and children were employed in the ratio 8 : 5 : 1 to finish a individual wages were in the ratio 5 : 2 : 3. Total daily wages of all amount to Rs 318. daily wages paid to each category					
	(a) 240, 60, 18		(b) 210, 70, 38			
	(c) 190, 95, 33		(d) None of these			
92 .	What will be the remaine	der when (9 ⁶ 1) is divid	led by 8?			
	(a) 0	(b) 3	(c) 7	(d) 2		
93.	What is the value of $(28 \ 10\sqrt{3})^{1/2}$ $(7 \ 4\sqrt{3})^{1/2}$?					
	(a) 3	(b) 5	(c) 7	(d) None of these		
94.	The price of an article was increased by $P\%$, later the new price was decreased by $P\%$. If the latest price was Re 1, the original price was					
			$1 D^2$			

(c)
$$\frac{10000}{10000 P^2}$$
 (d) $\frac{\sqrt{1 P^2}}{100}$

- **95.** A train running at certain speed crosses a stationary engine in 20 s. To find out the speed of the train, which of the following information is necessary
 - (a) only the length of the train
 - (b) only the length of the engine
 - (c) either the length of the train or the length of the engine
 - (d) both the length of the train and the length of the engine

96. In the given figure AD BC, AO $3 \text{ cm } OC \times 3$, BO $3x \times 19$, OD $x \times 5$, then the value of x is

(a) x 8, 9 (c) x 8, 10

97.	If s be surface area and v be the volume of a cuboid of dimensions <i>abc</i> , then $\frac{1}{v}$ is equal to						
	(a) $\frac{s}{2}(a b c)$	(b) $\frac{2}{s}$ $\frac{1}{a}$ $\frac{1}{b}$ $\frac{1}{c}$	(c) $\frac{2s}{a b c}$	(d) 2s (a b c)			
98.	The positive integer which (a) 1020	is nearest to 1000 and divi (b) 1040	isible by 2, 3, 4, 5 and 6 is (c) 960	(d) 1030			
99 .	A dishonest dealer professes to sell his goods at cost price. But he uses a false weight and thus gains $6\frac{18}{47}$ %.						
	Find the weight he uses in place of 1kg (a) 960 σ (b) 940 σ (c) 930 σ (d) 970 σ						
100.	The sum of factors of 19600 is						
	(a) 54777	(b) 33667	(c) 5428	(d) None of these			

