Mock Paper 4

7. The value of x^2 2bx c is positive, if

(a) $b^2 4c 0$

(d) b^2 c

Instructions

1. 2. 3. 4.	Attempt all the question Each question carries	ons/problems.	of mathematics, statistics & log awarded to wrong answer. bubble.	cal ability.	
М. М	arks: 300			Tir	ne: 2.30 hrs
1.	If arg (z) 0, then are	g(-z) - arg(z) is eq	ual to		
	(a)	(b) –	(c) $\frac{-}{2}$	(d) $\overline{2}$	
2.	If iz^3 z^2 z i 0), then $ z $ is equal t	0		
	(a) -1	(b) 1	(c) i	d) i	
3.	For any complex num	nber z , the minimum	value of $ z + z - 1 $ is		
	(a) 1	(b) 0	(c) $\frac{1}{2}$	(d) $\frac{3}{2}$	
4.	If the sum of first 2n t sequence 57, 59, 61,		ence 2, 5, 8, is equal to	the sum of the first n ter	ms of the AF
	(a) 10	(b) 12	(c) 11	(d) 13	
5.	Consider an infinite go 3/4, then	eometric series with fi	rst term a and common ratio r	If its sum is 4 and the s	econd term is
	(a) $a = 7/4, r = 3/7$	(b) $a = 2, r = 3/8$	(c) a 3/2, r 1/2	(d) $a = 3, r = 1/4$	
6.	Let p and q be the x^2 18 x B 0.	roots of the equation	$\int x^2 2x A = 0$ and let r	and s be the roots of	the equation
	If $p q r s$ are in	arithmetic progressio	n, then (A, B) is equal to		
	(a) (3, 77)	(b) (3, 7)	(c) (3, 77)	(d) (3, 7)	

(b) $b^2 4c 0$ (c) $c^2 b$

8.	If $n ^m C_2$, then $^n C_2$ is	equal to		
	(a) m $^{1}C_{4}$	(b) m $^{2}C_{4}$	(c) m $^{1}C_{4}$	(d) $3^{m} {}^{1}C_{4}$
9.	How many different nine so that the odd digits oc		ed from the numbers 2233	355888 by rearranging its digits
	(a) 16	(b) 36	(c) 60	(d) 180
10.	In the binomial expansio	n of $(a \ b)^n$, $n \ 5$, the sur	m of the 5th and 6th term	ns is zero. Then $\frac{a}{b}$ equals
	(a) $\frac{n-5}{6}$	(b) $\frac{n-4}{5}$	(c) $\frac{5}{n-4}$	$(d) \frac{6}{n - 5}$
11.	If n is an odd natural nu	imber, then $\int_{r=0}^{n} \frac{(-1)^r}{{}^nC_r}$ equa	ls	
	(a) 0	4	(c) $\frac{n}{2^n}$	(d) None of these
12.	6i 3i 1 If 4 3i 1 x i 20 3 i	y, then (x, y) is		
	(a) (3, 1)	(b) (1, 3)	(c) (0, 3)	(d) (0, 0)
13.	If the system of equation possible values of k are	ons x ky z 0, kx y	z = 0, x y z = 0 has z	a non-zero solution, then the
	(a) {-1, 2}	(b) {1, 2}	(c) {0, 1}	(d) {-1, 1)
14.	The point with position v	vectors $60\hat{\mathbf{i}} + 3\hat{\mathbf{j}}$, $40\hat{\mathbf{i}} + 8\hat{\mathbf{j}}$, $a\hat{\mathbf{i}}$ 52 $\hat{\mathbf{j}}$ are collinear if	
	(a) a 40	(b) a 40	(c) a 20	(d) None of these
15.		about the origin in the co		system. This system is rotated respect to new system, \vec{a} has
	(a) $p = 0$	(b) $p = 1 \text{ or } p = \frac{1}{3}$	(c) $p = 1 \text{ or } p = \frac{1}{3}$	(d) p 1 or p 1
16.	A tetrahedron has vertice faces OAB and ABC will		, B (2, 1, 3) and C (-1, 1,	2) then the angle between the
	(a) $\cos^{-1} \frac{19}{35}$	(b) $\cos^{-1} \frac{17}{31}$	(c) 30°	(d) 90°
17 .	Let PS be the median of passing through $(1, -1)$ a		P(2, 2), Q(6, 1) and R(7, 3). The equation of the line
	(a) $2x - 9y - 7 = 0$	(b) 2x 9y 11 0	(c) $2x 9y 11 0$	(d) 2x 9y 7 0
18.	The equations to a pair equations to its diagonals	of opposite sides of a para s are	allelogram are $x^2 - 5x = 6$	6 0 and y^2 6 y 5 0. The
	(a) $x + 4y + 13$ and $y + 4$ (c) $4x + y + 13$ and $y + 4$		(b) $4x y 13 and 4y 2(d) y 4x 13 and y 4$	
19.	A circle is inscribed in an (a) $a^2/6$	n equilateral triangle of side (b) $a^2/3$		are inscribed in the circle is (d) $a^2/24$
		•		

20.	The equation of tangents drawn from the origin to	the circle x^2 y^2 $2rx$ $2hy$ h^2 0 are
	(a) $x = 0$, $y = 0$	(b) $x = 0$, $(h^2 - r^2) x = 2rhy = 0$
	(c) $(h^2 r^2) x 2rhy 0$	(d) $(h^2 r^2) x 2rhy 0$
21.	the first quadrant, then their equation is	rcept of length 5 units on the x axis. If their centres lie in
	(a) $x^2 y^2 9x 2fy 14 0$	(b) $3x^2 3y^2 27x 2fy 42 0$
	(c) $x^2 y^2 9x 2fy 14 0$	(d) $x^2 y^2 2fx 9y 14 0$
22 .	x^2 k_1y^2 $2k_2y$ a^2 represents a pair of perpendicular	dicular straight lines, if
	(a) k_1 1, k_2 a (b) k_1 1, k_2 a	(c) k_1 1, k_2 a (d) k_1 1, k_2 a
23.	If the line $x = 1 = 0$ is the directrix of the parabola	y^2 kx 8 0, then one of the values of k is
	(a) $\frac{1}{8}$ (b) 8	(c) 4 (d) $\frac{1}{4}$
24 .		ch is passed over two pins. If the axes are 6 cm and 4 cm,
	the necessary length of the string and the distance	
	(a) $6, 2\sqrt{5}$ (b) $6, \sqrt{5}$	(c) $4, 2\sqrt{5}$ (d) $6 2\sqrt{5}, 2\sqrt{5}$
25 .		x^2 y^2 9. Let P and Q be the points $(1, 2)$ and $(2, 1)$
		(b) Q lies outside both C and E(d) P lies inside C but outside E
06	A common tangent to $9x^2$ $16y^2$ 144 and x^2	
20.		
	(a) $y = \frac{3}{\sqrt{7}} x = \frac{15}{\sqrt{17}}$ (b) $y = 3\sqrt{\frac{2}{7}} x = \frac{15}{\sqrt{7}}$	(c) $y = 2\sqrt{\frac{3}{7}} \times 15\sqrt{7}$ (d) None of these
27 .	Equation of the chord of the hyperbola $25x^2$ 16y	0^2 400 which is bisected at the point (6, 2), is
	(a) 16x 75y 418 (b) 75x 16y 418	(c) $25x 4y 400$ (d) None of these
28.		os $_m$), under the restrictions 0 $_{1, 2}$ $_n$ $_{\overline{2}}$
	and $(\cot_1) (\cot_2) \dots (\cot_n) 1$ is	1/9,5
	(a) $1/2^{n/2}$ (b) $1/2^n$	(c) $1/2^{1/2n}$ (d) 1
29 .	The solution of the equation \cos^2 \sin 1 0,	
	(a) $\frac{1}{4}$, $\frac{3}{4}$	(c) $\frac{3}{4}, \frac{5}{4}$ (d) $\frac{5}{4}, \frac{7}{4}$
30 .	A pole stands vertically inside a triangular park A each corner of the park is same, then in ABC the	BC. If the angle of elevation of the top of the pole from e foot of the pole is at the
	(a) centroid (b) circumcentre	(c) incentre (d) orthocentre
31.	If $\sin^{-1} x \frac{x^2}{2} \frac{x^3}{4} \dots \cos^{-1} x^2 \frac{x^4}{2}$	$\frac{x^6}{4}$ $\frac{1}{2}$ for 0 $ x $ $\sqrt{2}$, then x equals
	(a) 1/2 (b) 1	(c) $-1/2$ (d) -1
		39

32 .	In a triangle ABC , B	$\frac{1}{3}$ and $C = \frac{1}{4}$. Let D divid	le BC internally in the ratio	1:3, then $\frac{\sin BAD}{\sin CAD}$ equals
	(a) $1/\sqrt{6}$			(d) $\sqrt{2/3}$
33 .	If $x^y = e^x = y$, then $\frac{dy}{dx}$	is equal to		
		$\text{(b) } \frac{(x - y)}{(1 - \log x)^2}$	(c) $\frac{(x - y)}{(1 - \log x)}$	$(d) \frac{\log(x)}{(1 - \log x)^2}$
34 .	The inverse of the functi	on $f(x) = \frac{e^x}{e^x} = \frac{e^x}{e^x} = 2$ is	s given by	
	(a) $\frac{1}{2} \log \frac{x}{x} = \frac{2}{1}$	(b) $\frac{1}{2} \log \frac{x}{3} \frac{1}{x}$	(c) $\frac{1}{2} \log \frac{x}{2 \times x}$	(d) $2 \log \frac{x}{1} \frac{1}{x}$
35 .	Domain of the function	$f(x) \arcsin [\log_2 (x^2/2)]$		
	(a) [2, 2]	(b) (1, 1)	(c) [2, 1] [1, 2]	(d) [0, 2]
36.	For all $x (0, 1)$ (a) $e^x 1 x$	(b) $\log_e (1 x) x$	(c) $\sin x = x$	(d) $\log_e x x$
37 .	Let $f(x)$ e^x $(x 1) (x$	2) dx . Then f decreases	in the interval	
	(a) (, 2)	(b) (2, 1)	(c) (1, 2)	(d) (2,)
38 .	$\lim_{x \to 0} \frac{\sin(\cos^2 x)}{x^2} $ equal	ls		
	(a)	(b)	(c) 2	(d) 1
39.	The function $f(x) = (x^2 - 1)^{-1}$	1) $ x^2 - 3x - 2 \cos(x - 3x - 2)$ (b) 0	(c) 1	(d) 2
1 0.		0 has a vertical tangent a		
	(a) (1, 1)	(b) at no point	(c) (0, 1)	(d) (1, 0)
41.	Let $f(x)$ $\begin{vmatrix} x \end{vmatrix}$ for 1 for	$\begin{array}{ccc} 0 & x & 2 \\ x & 0 & \end{array}$ then at x	0, <i>f</i> has	
		(b) no local maximum		(d) no extremum
42 .	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$k \log \frac{3 + 2\sqrt{3}}{3}$, then k	is	
	(a) 1/2	(b) 1/3	(c) 1/4	(d) 1/8
43 .	$\frac{1/2}{1} \frac{e^x (2 x^2) dx}{(1 x) \sqrt{1 x^2}} \text{ is}$	equal to		
	(a) $\frac{\sqrt{e}}{2}$ ($\sqrt{3}$ 1) and $\frac{\sqrt{3e}}{2}$	(b) $\frac{\sqrt{3e}}{2}$	(c) √3 <i>e</i>	(d) $\sqrt{\frac{e}{3}}$
		. •		

44.	The value of the integral	$0 \frac{x \log x}{(1 + x^2)^2} dx \text{ is}$		
	(a) 1	(b) 0	(c) 2	(d) None of these
45 .	\lim_{n} 1 $\frac{1}{n^2}$ 1 $\frac{2^2}{n^2}$	$\dots 1 \frac{n^2}{n^2}$		
			• •	(d) $e^{(2)/4}$
46.	The volume of the solid	obtained by rotating the e	llipse $\frac{x^2}{a^2} - \frac{y^2}{b^2} - 1$ about a	axis of x is
	(a) a^2b cu unit	(b) b^2 cu unit	(c) $\frac{4}{3}$ a^2b cu unit	(d) $\frac{4}{3}$ ab^2 cu unit
47 .	The differential equation constants, is (a) $\frac{d^2y}{dx^2}$ 2 $\frac{dy}{dx}$ 2y 0		$e^{x} (A \cos x B \sin x),$ (b) $\frac{d^{2}y}{dx^{2}} 2 \frac{dy}{dx} 2y 0$	where A and B are arbitrary
			$\frac{d^2y}{dx^2} = \frac{dy}{dx} = \frac{2y}{2}$ $\frac{d^2y}{dx} = \frac{7}{2} \frac{dy}{dx} = \frac{2y}{2} = 0$	
	$\frac{dx}{dx^2}$ $\frac{dx}{dx}$ $\frac{dx}{dx}$		$\frac{d}{dx^2} = 7 \frac{d}{dx} = 2y = 0$	
48.		p with domain $\{x, y, z\}$ are the remaining are false: f (b) y		at exactly one of the following The value of f^{-1} (1) is (d) None of these
49 .		$g_4 \ 2 \ \log_8 2 \ \log_{16} 2 \ \dots$		
	(a) e^2	(b) \log_e 2 1		(d) 1 $\log_e 2$
50.		s $1, 2, 3, 4, 5$ and 6 is roundalue is not less than 2 and (b) $1/81$		values obtained the probability is not greater than 5 is (d) 65/81
51 .			osen at random. The possib	pility that the triangle with three
	vertices is equilateral, equ (a) 1/2	(b) 1/5	(c) 1/10	(d) 1/20
52 .		SYS' winning a test match spability that in a 5 match so (b) 1/4		Assuming independence from win occurs at third test is (d) 2/3
53 .		r of a circle in vertical plan aken by a particle to slide a		makes an angle of 60° with AB, by it to slide along CD is
	(a) 1:1	(b) $\sqrt{2}:1$	(c) $1:\sqrt{2}$	(d) $3^{1/4}:2^{1/2}$
54 .		of height 100 m, a ball is pronen the angle of projection		10 m/s. It takes $5 s$ to reach the
	(a) 30°	(b) 45°	(c) 60°	(d) 90°
		©	41	

55 .		es of two forces acting at a profession of smaller magnitude		ade of their resultant is 12. If the	
	(a) 3, 15	(b) 4, 14	(c) 5, 13	(d) 6, 12	
56.	-	N and 15N, act on a lightistance of its point of action (b) 20 N, 4.5 m	-	B respectively, 6m apart. The $$ (d) 10 N, 1.5 m $$	
57 .		of 5m/s, the rain drops appulling vertically downwards, (b) $5\sqrt{3}$		le of 45° from the vertical. If the (d) 4	
58.		cient of elasticity 1/2 is dro		h on a smooth floor. The total	
	(a) more than 2h		(b) less than 2h but more	than $\frac{3}{2}h$	
	(c) less than $\frac{3}{2}h$ but more	than $\frac{4}{3}h$	(d) less than $\frac{4}{3}h$	Z	
59 .	The AM of n numbers of (a) \overline{X} k	a series is \overline{X} . If the sum (b) $n\overline{X}$ k	of first $(n \ 1)$ terms is k , the $(c) \overline{X} \ nk$	nen n th number is (d) $n\overline{X}$ nk	
60.	The means of a set of nu	umbers is \overline{X} . If each numb	per is divided by 3, then t	he new mean is	
	(a) \overline{X}	(b) \overline{X} 3	(c) $3\overline{X}$	(d) $\frac{\overline{X}}{3}$	
61.	distribution is given by			mean 39.6. The median of the	
	(a) 28.61	(b) 38.91	(c) 29.13	(d) 28.31	
62.	-			nds from the commencement, it tion with which it moves are (d) None of these	
63 .	, , ,	, ,	, , ,	izontal, its time of flight is given	
	(a) $10\sqrt{3} \text{ s}$	(b) $\sqrt{3} \text{ s}$	(c) $5\sqrt{3}$ s	(d) None of these.	
64.	Forces proportional to A represented in magnitude (a) AC		ng the sides of triangle (c) CB	ABC in order, their resultants (d) BC	
65		under the action of three		(u) DC	
	(a) they must meet in a po(b) they must act in a strain	pint			
66.	The resultant of the forces 4, 3, 4 and 3 units acting along the sides <i>AB</i> , <i>BC</i> , <i>CD</i> , <i>DA</i> of a square <i>ABCD</i> of side 'a' respectively is (a) a force $5\sqrt{2}$ through the centre of the square (b) a couple of moment $7a$ (c) a null force				
	(d) None of the above	•	=		
			42		

	(a) incen	tre		(b) centr	roid	(c) circumo	entre	(d) ortho	ocentre	
68 .					make an angle 1			O, has ma	agnitude 2 ui	nits and is
			M. Then	_	same unit, the ma		M and N are			
	(a) $2\sqrt{3}$,	4		(b) $\frac{\sqrt{3}}{2}$,	2	(c) 3, 4		(d) 4, 5		
69 .	If tan 2	tan	1 then	is equal						
	(a) n	6		(b) <i>n</i>	6	(c) 2n		(d) None	e of these	
70.	If <i>m</i> rupe paise co		and <i>n</i> ter	n paise co	oins are placed in	a line then	the probability	that the	extreme coi	ns are ten
	(a) ^m ⁿ	C_m		(b) <u>(m</u>	n (n 1) n) (m n 1)	(c) m nP_n	n	(d) ^m	$^{n}P_{n}$	
71.	The valu	e of b su	ch that t	he scalar	product of the ve	ector $\hat{\mathbf{i}}$ $\hat{\mathbf{j}}$	$\hat{\mathbf{k}}$ with unit ve	ctors par	allel to the s	um of the
	vector 2	$\hat{\mathbf{i}}$ $4\hat{\mathbf{j}}$	$5\hat{\boldsymbol{k}}$ and	$b\hat{\mathbf{i}}$	$3\hat{\mathbf{k}}$ is one, is					
	(a) 2			(b) 1		(c) 0		(d) 1		
72 .	The equation $(1 ext{ } x^2)$	1			passing through	the origin	and satisfyi	ng the	differential	equation
	(a) (1 x	$(x^2)y x^3$	3	(b) 2 (1	x^2) $y = 3x^3$	(c) 3 (1 x	2) y $4x^{3}$	(e) None	e of these	
73.	The valu	e of the	integral	0 1 0	$\frac{x \ dx}{\cos \sin x}$, 0	is				
	(a) ${\sin}$			(b) 1 s	sin	(c)		(d) $\frac{1}{1}$	cos	
74.	$\sqrt{(x^2-3)^2}$	$\frac{x}{3x} = \frac{2}{3}$	$\frac{1}{x-1}$	c is equa	ıl to					
	(a) $\frac{1}{\sqrt{3}}$ to	an $\frac{1}{}$	$\frac{x}{3(x-1)}$	С		(b) $\frac{2}{\sqrt{3}}$ tan	$1 \frac{x}{\sqrt{3(x-1)}}$	- C		
	(c) $\frac{2}{\sqrt{3}}$ ta	$\frac{1}{\sqrt{2}}$	$\frac{x}{x-1}$	с				(d) None	e of these	
75 .	If $y = \frac{x}{1}$	$\frac{c}{x^2}$ when	ere c is a	constan	it, then when y is	stationary,	xy is equal to			
	(a) $\frac{1}{2}$			(b) $\frac{3}{4}$		(c) $\frac{5}{8}$		(d) None	e of these	
76.	The slop	e of a co	ommon	tangent t	o the ellipse $\frac{x^2}{a^2}$	$\frac{y^2}{b^2}$ 1 an	d a concentric	circle of	radius r is	
	(a) tan	$\sqrt{\frac{r^2}{a^2}}$	$\frac{\overline{b^2}}{r^2}$	(b) $\sqrt{\frac{r^2}{a^2}}$	$\frac{b^2}{r^2}$	(c) $\frac{r^2}{a^2} \frac{b}{r}$	$\frac{2}{2}$	(d) $\sqrt{\frac{a^2}{r^2}}$	$\frac{r^2}{b^2}$	
						13	i			

67. The centre of gravity of three particles placed at the vertices of a triangle is at its

77.	The two circles $x^2 + v^2$	$2x \ 2y \ 7 \ 0 \ and \ 3 \ (x)$	$(2 v^2) 8x 29v 0$	
	(a) touch externally	_, _, _ , _ , _ , _ , _ , , , , , , , ,	(b) touch internally	
	(c) cut each other orthogo	onally	(d) do not cut each other	
78.	The equations to a pair equation of its diagonals (a) $x + 4y + 13$ and $y + 4z + 4y + 13$	are x 7	allelogram are $x^2 - 5x = 6$ (b) $4x - y = 13$ and $4y = 2$ (d) $y - 4x = 13$ and $y - 4$	
70				
13.	(a) $\frac{7}{\sqrt{5}}$	t (3, 5) from the line $2x$ (b) $\frac{7}{\sqrt{3}}$	_	Tallel to the line $x=2y=1$ is (d) $\sqrt{13}$
		V10		
80.	$\frac{\frac{1}{2!} \frac{1}{4!} \frac{1}{6!} \dots}{1 \frac{1}{3!} \frac{1}{5!} \dots} \text{ equa}$	als		
	(a) e 1	(b) $\frac{e}{e}$ 1	(c) e 1	(d) None of these
81.	If $C_0, C_1, C_2,, C_n$ de	enote the coefficient in the	e expansion of $(1 x)^n$, th	en the value of $\binom{n}{r-1}r {}^nC_r$ is
			(c) $(n \ 1) 2^{n-1}$	(d) $(n \ 2) \ 2^{n} \ 1$
82 .	If $(1 2x 3x^2)^{10} a_0$	a_1x a_2x^2 a_{20}	x^{20} , then a_1 equals	
	(a) 10	(b) 20	(c) 210	(d) None of these
			f(x) g	$h(x) \qquad h(x)$
83.	If $f(x)$, $g(x)$ and $h(x)$ are	three polynomials of degre		(x) $h(x)$ is a polynomial of (x) $h(x)$
	degree		, , , ,	
	(a) 2	(b) 3	(c) 4	(d) None of these
84.	If $S = \frac{1}{12} = \frac{1}{23} = \frac{1}{34}$	$\frac{1}{45}$, then e^{t}	5 equals	
	(a) $\log_e \frac{4}{e}$	(b) $\frac{4}{e}$	(c) $\log_e \frac{e}{4}$	(d) $\frac{e}{4}$
85.	The term independent of	$f(x)$ in $\sqrt{\frac{x}{3}}$ $\sqrt{\frac{3}{2x^2}}$ is		
	(a) $\frac{5}{12}$	(b) $^{10}C_1$	(c) 1	(d) None of these
86.	If , are the roots of ax	c^2 bx c 0, then the ϵ	equation ax^2 bx $(x 1)$	$c(x 1)^2 0$ has roots
			(c) — 1, — 1	
			44	

87. Which one number can be placed at the sign of interogation?

- **88.** Urvashi said to her friend, "Yesterday I attended the birthday party of the son of the only son in law of my mother's mother'. How is Urvashi related to the man, whose birthday party she attended?
 - (a) niece
- (b) daughter
- (c) sister
- (d) mother

- (e) None of these
- **89. Statement:** "Z–TV, the only TV which gives the viewers chance to watch two Programmes simultaneously"

— An advertisement.

Assumptions: I. Sale of Z–TV may increase because of the advertisement.

II. Some people may be influenced by the advertisement and buy Z-TV.

III. The sale of Z–TV may be on the downward trend.

- (a) None is implicit
- (b) only II and III are implicit
- (c) only I and II are implicit
- (d) all are implicit
- (e) None of the above
- **90. Statement:** Should we impart sex education in schools?

Arguments: I, Yes, all the progressive nations do so.

II. No, we can not impart it in co-educational schools.

(a) if only argument I is strong

(b) if only argument II is strong

(c) if either I or II are strong

(d) if neither I nor II is strong and

- (e) if both I and II are strong
- 91. How many triangles are there in the following figures?
 - (a) 27
 - (b) 23
 - (c) 21
 - (d) 25

(a) 2

- (e) None of the above
- **92.** On the basis of the following figures you have to tell which number will come in place of '?'

(b) 3

(c) 6

(d) 4

Directions (93-95)

A cube is painted red on two adjacent surfaces and black on the surfaces opposite to red surfaces and green on the remaining faces. Now the cube is cut into sixty four smaller cubes of equal size.

93. How many smaller cubes have only one surface painted?

(a) 8

(b) 16

(c) 24

(d) 32

94. How many smaller cubes will have no surface painted?

(a) 0

(b) 4

(c) 8

(d) 16

95. How many smaller cubes have less than three surface painted?

(a) 8

(b) 24

(c) 28

(d) 48

Directions (96 99)

Choose the Venn diagram which best illustrates the three given classes in each question

(c)

(d)

0

96. Science, Physics, Chemistry.

97. Atmosphere, Hydrogen, Oxygen.

98. Machine, Lathe, Mathematics.

99. Biology, Botany, Zoology.

100. Find the missing number in the following questions

6	8	?
9	3	13
10	14	1

(a) 11

(b) 9

(c) 7

(d) 5

